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It is well known that problems of dynamics of a rotating fluid have a series of specific
peculisrities and present significant difficulties. In recent years equations of motion of a
rotating fleid have been investigated in papers of Sobolev, R.A. Aleksandrian, S.G. Krein
and others. Motion of a symmetrical top with a cavity filled with an ideal fluid was studied
in the paper of [1] and subsequently (by a different method) in [2]. Theorems on stability
of motion of a solid body with a cavity filled with fluid were proved by Rumiantsev and
other authors (see book {3], which contains a bibliography). A number of papers, for exam-
ple [4 10 6], is devoted to the snalysis of motion of fluid in a cavity of a solid body execu-
ting a prescribed motion : uniform rotation or regular precession. The general problem of
motion of a body with a cavity filled with a viscous fluid was examined in [7] for the case
of high viscosity fluid and in [8] for the case of low viscosity under the condition that the
body executes small oscillations.

In this paper the motion of a solid body with a fluid-filled cavity is examined under the
following sssumptions. Distribution of masses in the body and the shape of the cavity are
considered arbitrary, the fluid is ideal or has low viscosity. The motion of the body with
the fluid is assumed to.be close to uniform rotation around an axis. One property of natural
oscillations of the liquid rotating in the cavity is established. Special solutions of linear-
ized equations of rotational motion of an ideal fluid are brought into the investigation.
These solutions depend on the shape of the cavity and are analogous to Zhukovskii's po-
tentials for the case of irrotational motion. It is shown that through these solutions the
angular momentum of the system is expressed by means of some tensors in the case of an
ideal fluid and also in case of a fluid with low viscosity. Some concrete shapes of cavi-
ties and particular cases of motion are also examined. The characteristic equation for
oscillations of a rotating free solid body with a fluid~filled cavity is obtained and in some
cases analyzed.

1. Basfe squations. Let us examine the motion of & solid body with a cavity D
filled with an incompressible fluid of density p and kinematic viscosity v. Navier-Stokes
equations and boundary conditions are written in the system of coordinates Ox,x,x3, which
is rigidly connected with the solid body

Wotox(@xr) o' xr+20xV 40V /ot + (VO)V= — p 1P + YU +4-vAV
divV =0 ip, V=0 (V=0 for v=0) ons (1.1)

Here ¢ denotes time, I is the radius vector with respect to point 0, V is the velocity in
the system of coordinates Ox x,x3, P is the pressure, U is the potential of mass forces,
W, is the absolute acceleration of point O, @ is the absolute angular velocity of the body,
@ is its angular acceleration, § is the boundary of region D, i is the unit vector of the in-
ternal normal to § {Fig. 1). In the case of ideal fluid the no-slip condition is replaced by
the condition of no flow.

We shall write the angular momentum K of the body with fluid with respect to the center
of inertia O, of the entire system

=g = )4 )
K=1J m+p§rdev (I =30 4 3%, (1.2)
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Here J is the inertia tensor of the entire system with respect
to point O, composed of the tensor of inertia of the body J (1)
and the fluid J(2) with respect to the same point.

The second term in Eq. (1.2), called the hydrostatic moment,
does not depend on the selection of the pole and may be compu-
ted with respect to point 0. The equations of moments with res-
pect to point O, is written in the system of coordinates Ox ;%3

K-+eoxK=M (1.3)

Here the dot denotes a derivative in the system Ox x,x;, M
is the principal moment, with respect to point O, of all external
forces acting on the body with the fluid.

Egs. (1.1) to (1.3), together with the usual equations of motion
of the center of inertia, kinematic relationships and initial con-
ditions fully describe the dynamics of the body with the fluid.

Let the unperturbed motion of the hody with fluid with respect
to the center of inertia O, be a rotation of the whole system with
constant angular velocity @ , around the axis O,y; which passes
through the point O, paralleY to axis Ox3. We shall examine the
Fig. 1 perturbed motion assuming that its deviations from the unperturbed
motion are small and proporticnal to e" "where A is a complex

number. Let us assume
=0+ QM o =AM @y=we; (0, >0)

V = ey, P =p[U—wor+ (0 xr)?] + pet (1.4)
Here €, is the unit vector of axis Oxg, (} is a constant vector, V and p are functions of
coordinates x,, x5, X3, where all potential terms in Eq. (1.1) are taken with respect to
pressure. Quantities d, V and p are considered small of the first order.
Substituting Fqs. (1.4) into Eqs. (1.1) to (1.3) and discarding small terms of higher or-
der, we obtain the basic Egs. in the form

AMxr 4+ 200xV+Av=—p+vAw, divv=0 in D

v=0 (vn=0 for v=0) on § (1.5)
K=Jo,+eJ.Q+G), G=p§rxvdv
D

wox (Jo0) +eMAJTQ+G)+Qx T w) +wyx(J-Q+G)] =M (1.6)

Without destroying generality we select as the unit of time the characteristic time of
rotation of the body T ™ 1/w, as the unit of length the characteristic dimension of cavity
! and as a unit of mass the mass of the entire system m. Then the ratio of the mass of fluid
to the mass of the whole system has the order of magnitude p! 3/m = p, while the Reynolds
number is equal to J%/-1T-! =1 -1, The quantities p and v may be considered nondimension-
al parameters.

2.0n natural oscillations of the fluid. If the motion of the liquid is pres-
cribed, the quantity A and the vector (} are known. Determination of the motion of the liquid
is reduced to a boundary value problem (1.5) for functions V and p. The solution of this
problem is unique if and only if A is not a characteristic value of the homogeneous problem

209 xV 4+ Av = —Yp+vAv, divv=0 in D
v=0 (v.n=0 for v=0) on § (2.1

Egs. (2.1) describe natural oscillations of the fluid in a uniformly rotating vessel.

We shall prove that in the case of a viscous fluid all characteristic values of problem
(2.1) are located in the half-strip |Im A| § 2wy, Re A € — Cv, and in case of the ideal
fluid (v = 0) on the section ReA=0,|A £ 2w,. Here C> 0 is a constant depending only
on region D. The boundary S is assumed to be sufficiently smooth in this case. The formu-
lated statement is known [1] and [6] for the case of ideal fluid.

For the purpose of proof the first Eq. of (2,1) is scalarly multiplied by v* (the asterisk
denotes complex-conjugate values everywhere) and the following Egs., which are valid by
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virtue of the second Eq. of (2,1), are substituted into it
v p=div(pv*), v*Av=div(v* Xrotv)—|rotvj
Subsequently we integrate the equation obtained over the region D. Integrals of diver-
gent terms become zero as a result of boundary condition (2.1) and we obtain

ZQ)QSes-(vxv')dv—i-lS{dev +v§} rotv[3dy =0 {2.2)
D D

Temporarily, let us designate by & and b the real and imaginary parts of vector v=a +

+ ib. Then we have
vXVv*=(atib)X(a—ib)=—=2i(aXh)
les - (vXV*)[<2laxb|<2lal-|bI|ap+|bjr=|v] (2.3)

Separating in Eq. (2.2) the real and imaginary parts and using the first Eq. of (2.3) we

obtain

Rek S [vidy =—w S jrotviids, ImA S [V ]y = 400§03'(8x b)dy (2.4)
D D D
Let A be the eigenvalue of problem (2.1), ¥ the eigenfunction corresponding to it (its
norm is positive). Then, using inequality in (2.3), we obtain from the second Eq. of (2.4)
the desired evaluation |Im A| € 2 wgy, which is valid for both the ideal and the viscous
fluid, In the case of ideal fluid (v = 0) it follows immediately from the first Eq. of (2.4) that
ReA = 0. In the case of a viscous fluid we utilize the following inequality [9):

{irotvirar > ¢ S [V rdv (2.5)
D D

which is valid in case of sufficiently smooth boundary § of region D, when divv=0in D
and the tangent to surface § of the component of vector Vv becomes zero on S. These con~
ditions are satisfied in the case of a viscous fluid {see (2.1)). The constant C > 0 depends
only on region D. In [9] the inequality (2.5) is proved for real vector functions, however it
is apparent that it will also apply (with the same constant C) to complex vector functions.
Applying inequality (2.5) to the first Eq. of (2.4) for V> 0, we obtain the desired inequal-
ity Re A — Cv for the viscous fluid. In this manner all natural oscillations of the rotat-
ing viscous liquid in the vessel decay not slower than exp (—Cyt).

8. Ideal fluid. Let A be fixed and lie outside the section Re A= 0, IM & 20,, where
all the characteristic values of problem (2.1) are located. Then neither A, nor (— )\? are
characteristic values of problem (2.1). We shall show that the solution of the hydrodynamic
problem and the vector G entering into equations of motion of the body (1.6) can be expres-
sed through some universal functions. In Section 3 this problem is solved for an ideal fluid
(superscript® at v, p, G refers to the ideal fluid), in Section 4 it is solved for a fluid with
low viscosity.

In case of ideal fluid, Eqs. (1.5) have the form

209 x vV + AV° 4 g = 0, divv®=0 i D

vn=0 on s, g=AQxr -+ Yp° (3.1
The first Eq. of (3.1) is solved with respect to ¥v°. Scalar and vector pre-multiplication by
by.®, gives
Awo-v° +@o-g = 0, 2w (o-v°) — 2002V° 4+ Ao X V° + @gx g =0  (3.2)
Into the second Eq. of (3.2) the product @y. v° is substituted from the first Eq. of (3.2)

and @, x V° from the first Eq. of (3.1) and then the second Eq. of (3.2) is solved with res-
pect to ¥v°

VO == [20)0 xg— }:g —_ 4)\-‘1(’30 (MQg)] / (7\.2 4 4(002) (3.3)
Let us introduce a linear transformation L and a complex number ¢
6 = 2am¢ / A, L-a=a ¢’ (e;-a) - s (axes)

1 S 0

Lel—s 1 0 (3.4)
0 0 1+4c2

Here & is an arbitrary vector, the matrix L determines the transformation in the system
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of coordinates Ox,x,x3. Matrix L, dependent on o, has the properties
L’ () = L (—o0), a-(L-b)=(L" -a) -b (3.5)
Here the prime denotes the transposed matrix, & and b are arbitrary vectors. In the nota-
tion of (3.4), Eq. (3.3), the equation of continuity and boundary condition (3.1) take on the
form
vP=—A1(146%)1L.g, g=A2xr+Vp°
div(L-g)=0 D, n-(L:g)=0 ons

Solution of Egs. (3.6) can be presented in the form
3

3
1
P =—h 2 Qe V= 52;} QL (Vg; —e;xr) (3.7
j=1 =1

Here @. are unit vectors of axes Ox,, {}; = {}-@, are projections of vector {} on these
sxes, while functions ¢; satisfy linear boundary value problems (3.8)
div[L-(Vp,—e;xr)] =0 in p, n-[L.(Vp;—e;x =0 ons (=1,2,3)

Substitating Expression (3.4) for L, Eq. (3.8) can be written in the form

Ag; + o* (0%@; / 023%) — 268,53 =0 im D  (7=1,2,3) (3.9)

Here A is the Laplace operator with respect to variables %, x, %3 and §;3 is the

Kronecker symbol. Sansthuting v® from (3.7) into Eq. (1.6) we obtain for G

(3.6)

° ° o o 1
G ::-—QI sz 2{ ej[jk Qk: ]jk :iw—iy—ﬁgs (ejxr).[L,(V(pk_._eer)}dv
jok=1 9
(. k=1, 2, ) (8.10)

Here 1° is a tensor, I,,° are its components in the system of coordinates Ox;x3%3. In
this manner the determination of ¥v°, p© and @° is reduced to the solution of boundary value
problems (3.8) and to computation on integrals (3.10). Relationships (3.10) can be given a
different form if functions @; , are introduced into the investigation and these functions
satisfy the boundary conditions (3.11)
div [I/ (Vo —e;x1)] =0 in p, n-[L'.(Ve; —e;xr;] =0 on s (=129

From Eqs. (3.5), (3.8) and (3.11) it is apparent that functions @, for some value of o
are simultaneously functions of @; for the value (— ). From these same equations, iden-
tities follow which are valid for any fanction f

Vi L (e x 1)) = Vf- L (Vey)] — div [fL'- (Ve, —e; x 1)]
Svf'{L’-(e,'x r)jdv = i Vi (Ve, ) dv (3.12)
D D

Application of the second identity of (3,5) and the second identity of (3.12) to integrals
(3.10) for f= @, we obtain

1 ¢ , ’
Iy’ =1 +52§ (Ve (L (V5)] — (e x 1) (L (& x 1)} dv (, k=1, 2, 3)(3.13)
D
Fanctions Q;, @; and tensor I° depend only on the shape o1 the cavity and the value
of g. From Eqs. {3.5) and (3,13} it follows that
I3 (—6) = I/ (o) G k=1,23) (3.14)
Let functions @; and tensor I° correspond to some 0. Applying to Eqs. (8.8) the oper-
ation of complex conjugation we obtain that functions @;* correspond to the value o*
I8 (@) = Up® @1 Gik=1,2,3) (3.19)
If o is real (¢0* = o) then it follows from what was said before that all functions @; and
components of the tensor I1° are real in this case, If on the other hand o is a purely imagin-
ary number (g * = — o), then by comparing Eqs. (3.14) and (3.15) we obtain
U’ (@)]* = I (5)  for Res=0 (j,k=1,2,3) (3.16)
In case of irrotational motion (wy = g = 0) operators L and L ’ from (3.4) and (3.5) turn
into unit operators. In this case proglema (3.8) and (3.11) for functions @; and @; trans-
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form into problems of Neumann for harmonic functions which are called Zhukovskii’s po-
tentials for a given cavity [3]. It follows then from Eq. (3.13) that for o = 0 with accuracy
to a factor of p the tensor I° is equal to the difference between the tensor of apparent ad-
ditional masses and the tensor of inertia for the given cavity (with respect te point 0).

4. Viscous fluid. Solation of problem (1.5) for the case of a fluid of low viscosity
(s < 1) is sought by the boundary layer method which has repeatedly been applied in simi-
lar problems (|3 to 6 and 8] ). We assume (the superscript indicates the order of approxima-

tion)
v=(+v:ivi+ . )+w, p=@@E +vipt+.l)tg @
We shall require that sums within parenthesis in Egs. (4.1) satisfy (without terms W and
q) the Navier-Stokes equations. Substituting these sums into Eqs. {1.5) and equating terms
with equal powers of ¥ we obtain for V° and p ® Eqgs. (3.1) and for v! and p! Egs.
2w, x vi4 Avl = — Up', divvi =10 (4.2)
Analogously we may write equations also for the following terms of expansions (4.1).
Considering terms W and g, for functions ¥ and p to satisfy Navier-Stokes equations, it is
necessary to require that

20y x W Aw = — g -+ vAw, divw =0 {4.3)
The functions W and g are also considered as expanded in powers of v
w=wW VWl =" Vgt e (4.4)

where the coefficients of expansions are functions of the boundary layer type which rapidly
tend to zero outside the boundary layer region Dg. The region Dg adjoins the walls S and
has a thickness of the orderv A,

The boundary conditions for coefficients of expansion (4.1) and (4.4) are obtained by
the following recursion method. The functions ¥° and p © are subjected to the condition
v®. n= 0 on §, then they coincide with solution (3.7) for the ideal fluid. The condition
{w°)y=—v°on S is placed on functions W° and ¢° and also W°+ 0, ¢+ 0 cutside the
region Dg. Index 7 denotes grojection of the vector on the plane which is tangent to the sur-
face S. Functions v 1 and p! are subjected to the condition v%vl . p=—w°.non S. In
general, in the k-th approximation functions v and p* must compensate for the discrepancy
in satisfying the boundary condition v . n= 0 on S, which was caused by preceding terms
of expansions v! and W! (i = 0, 1,..., k — 1). Functions WX and ¢* must satisfy conditions
WX+ 0 and gk » 0 outside of the boundary layer Dg and compensate for the discrepancy in
satisfying the condition v, = 0, which arises due to functions vk, viandWlfori=0, 1,
very k& — 1. Without examining questions regarding the mathematical basis of expansions
(4.1) and (4.4), we note that the boundary layer method was applied to hydrodynamic prob-
lems leading as a rule to physically correct results. For one problem of fluid motion in a
cavity of a rotating solid body the agreement of results from calculations by the boundary
lager method with experimental data is noted in [s]. In the following, in addition to ¥v° and
p° the terms ¥1, p! end W° and ¢° will also be taken into account, These terms will be de-
noted simply by W and q. In the region of boundary layer Dg we shall introduce curvilinear
orthogonal coordinates £, 77, £ in such a manner that { = 0 on the surface of walls S. In
this case {> 0 in the region Dg. Let wg, wy and Wy be the components of vector W in
these coordinates, and Hz, H,, and H ¢ the corresponding coeeficients of Lame, Hf°. Hy
and H y° are the values o! these coefficients for = 0.

Witjzout destroying generality it is assumed that H ;° = 1, then { is the distance along
the normal m from the surface §.

In Eqs. (4.3) we pass to coordinates £, 1, { and then make a substitution of variables

-]

{= v'ia, wy = v/, (4.5)
and in the equations pass to the limit for 1 + 0. We obtain
) % a )
—zmon'e3wﬂ+?\:WE='—-a'%+“5a’§ y 2mon-e3wz—§— }\.wﬂ_—_—-(—a% +-W'l
dq ] oo = 0, Divw, 4 6w, /00 =0 W == (Wg, Wy)
. 1 (I w;) @ (H.%u) (4.6)
Divw, = — [ AN <0 ]
FTHSHY F I ™

S ° N ° . . .
Wg = —Vg 'y, W= —"0Uy for =0 u;»,u,,.ua.qw() for & - 00
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Here the boundary conditions for W and ¢ indicated above are also written out, The two-
dimensional divergence operation with respect to variables £ and 7) is denoted through Div
for two-dimengional vector fields on the surface 5, w.. is_a vector with components w¢, wy
and vg ®, vy Y are corresponding components of vector v° where vc° = 0 on S by virtue
of condition v°. n= 0. From the third Eq. of (4.6) it follows that ¢ is independent of a.
Taking into account the boundary condition for @ = oo we obtain g = 0. Then the first two
Egs. of (4.6) transform into a system of two ordinary linear differential equations of second
order with constant coefficients. In these equations the role of the argument is played by
@ while £ and 7 on which n is dependent, enter as parameters. The solution of this fourth
order equation with two boundary conditions {4.6) for @ = 0 and with two conditions for
@ = oo has the form

wg =— Y3 (0" + 1v,°) E1 — Y2 (0" — ivy°) Ez
Wy =, (ive® — vy°) By — 2 (iv:° 4+ v2) B
Ey = exp () = exp (I Lv") (k=1,2) (4.7)

Pe= YA+ 2iomn e = V 20, Vd“l +in-e3

As i, and jty those branches of the root are taken for which Re jyx < 0 fork =1, 2.
Values i; and ji; depend on the point of the surface 5.
The solution {4.7} can be written in vector form
we= —/pv° (B, + Ey) —'/si (v° X n) (E; — Ey) (4.8)
Taking into account the notation in (4.7), we substitute solution (4.8) into the fourth
Eq. of (4.6) and integrate it with respect to @ with the boundary condition wgq = 0 for @ = co.
Then we obtain function w, and from equation (4.5) also w ¢ in the form

wy =2 Div [(p By + Pa ' Eg) v + i (7 Ey — pa 'Ea) v x ] (4.9)
Egs. ¢ = 0 and (4.7) to (4.9) completely determine the functions W and ¢. If Rep, <0
for k = 1, 2, then the functions W.. and w] decrease rapidly (exponentially) with inoreasing
{- Outside the boundary layer Dy, i.e. for { 3 v* it is permissible to set W= 0 with an
error smaller than any power of v, If however Repty = 0 or Rep, = 0, then the function W
does not decrease with increasing distance from tﬁe walls of the cavity, which destroys the
initial assumption of a boundary layer. This will occur, as follows from Eqs. (4.7}, under

conditions
ReA <0, Imd =  2m0n-ey {4.10

If A does not lie within the half-strip ReA< 0, |Im A] < 2wy, for which it is known that
it contains all eigenvalues of the problem (see Section 2), then conditions (4.10) are not
satisfied for any 0 and the houndary layer will not have singularities anywhere. If however
A is located in the half-strip indicated, then in the vicinity of some points of the walls in
which the normal n satisfies the second condition of (4.10), the boundary layer will have a
singularity (its thickness will tend to infinity). In case of smooth surfaces these critical
points form usually closed curves (for example, for a spherical cavity there are two circum=-
ferences with centers on the axis of revolution). A more detailed analysis of the solution
near these points shows [4 and 5] that the solution here remains bounded but has a more
complex character than in the boundary layer. In the following we neglect the influence of
these singularities.

Functions ¥} and p! satisfy Eq. {(4.2) and the boundary condition stated above, which,
taking into consideration Eqs. (4.9) and (4.7), for {= 0 can be written in the form

vip=—v'rw.n=—vuwy=—DivA on §
A=+ pa ) VoAl — pe™) VO x 0] (4.11)

The first Eq. of (4.2) is solved with respect to ¥1 and v! is substituted into the second
Eq. of (4.2). In the notation of (3.4) we obtain in analogy to (3.6):
vi=_—A1(1+4 65 L (VDY div [L-(VpY)] =0 (4.12)
Without solving the problem (4.11), and (4.12) for ¥ and p! we can {find the vector G from
(1.6) with an error of order (1% ). Since in the region Dg with a volume 0(v %) we have
1w,1 ~1andwy™v % |, while outside of this region we can assume W= 0, then to obtain
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the desired accuracy we assume
v = V° + W, - vy}

G=G°+p S rxwfdv-{—pv‘/'erv‘dv (4.18)
D, b
The term @° corresponds to vector V° and is determined by Eq. (3.10). Without loss in
accuracy integration with respect to Dg in (4,13) can be replaced by integration with res-
pect to { from O to e over the surface S. Substituting Expression (4.8) for W7 we obtain
after integration with respect to /", taking into account expression (4.11) for A
oo

S rxw,dv=§rx(8w,d§)d8=v‘f=§rxAds (4.14)
D S ] ]
In the third term of Eq. (4.13) for G we substitute V1 from (4.12) and expand the obtain-
ed vector with respect to unit vectors &,

3
1 1
iy == et ; ; -[L- dv
Fxvide = s 3) e,é(e,,xr) [L-(VpY)]
=1
Utilizing the second identity of (3.5) and subsequently the second identity of (3.12) for
f=p1, we obtain

3
1
gy = — — 1 SVe, (wpt[L/ (Vo .

ervdv_ l(1+62)2 e,§Vp [L'-(Ve;')] dv (4.15)
D j=1

The expression under the integral in (4.15) ia transformed with the aid of Eqs. (3.5) and
(4.12) . ’
Pt [L-(Vg;)] = [L-(VP)]-Vey = div [¢/L- (VP)]=— A (14 ¢*) div (¢;'v")

The obtained relationship is substituted into Eq. (4.15) and the theorem of Gauss~Ostro~
gradskii and boundary condition (4,11} are applied

3

S rxvide = Y e; §cp,—' Div Ads (4.16)
D j=1 S

We note the following identity which applies to any vector-function & and scalar func-
tion f

fDiv a = Div (fa) — a -Grad f = Div (fa) — a - (\Vf — n df / dn) (4.17)

Here Grad is the operator for taking the gradient along the sarface S [10]. For any vec-
tor field b given on a closed surface 5, the following identity is valid

$Divhds = 0 (4.18)
8

which follows from the theorem of Gauss-Ostrogradskii for vector fields on the surface [10].

Identity (4.17) for &= A and f= @;’ and identity {4.18) are applied for transformation of
integral (4.16). We also note that from boundary condition (3.1) and Eq. {4.11) for A it fol-
lows that A-n= 0 on S. Then integral (4.16) takes the form

3
erv1 dv = —% e,-&V(pj’-Ads (4.19)
D =1 8

Substituting Expressions (4.14) and (4.19) into Eq. (4.13) and decomposing the vector
rx A with respect to coordinate axes we obtain with accuracy to small terms of higher
order:

3
G=G"—pvr ) e,-§ (Vo; —e;xr)-Ads (4.20)
j=1 S
Into Eq. (4.20) we substitute vectors A from (4.11) and v° from (3.7). Finally we obtain
3
G = G°+ G, Gl = vt . Q = pv¥r D] e, /51
i k=1

A=
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1 , B} -
Lt = —m;&(v% —e;xr)- {7 + ) L (Vg —

—epxT) (Wt —pa ) (L (Vor — € xT)] xnpds  (j, k= 1,2,3)(4.2])
Here I! is a tensor, I 1 are its components in the system of coordinates 0x ;% g% 3, func-
tions pt  and y , are determined by Eqs. (4.7). The values of / x ! and also of I}, from
(3.10) and (3.133 depend only on the shape of the cavity and the value of o. Since the vec-
tor G is independent of the selection of point O, tensors I° and I! also have the same pro-
perty. It is sufficient for their determination to find functions Q; and @;’, which satisfy
the boundary value problems (3.8) and (3.11) and are related to the motion of an ideal
fluid. From Egs. (3.10) and (4.21) it follows that
G = pl-Q, I=014++v/g (4.22)
The velocity and pressure of the fluid are determined by Eqs. (4.1), where functions v°
and p° are given by Eqs. (3.7), W is determined by Eqs. (4.7) to (4.9), ¢= 0, and ¥! and p!
satisfy the boundary value problem (4.11), (4.12). This problem, just like problems (3.8)
and (3.11) for functions ; and @, has a unique solution if A lies outside the section
|Re|k= 0, |A| € 2@,. In this case 0, according to Eq. (3.4), lies outside the set Reo = 0,
o> L
Let functions @; and (Pj’ be known for the perscribed shape of the cavity (in a unique
or even nonunique manner), Then from Egs. (3,10), (3.13), (4.21) and (4.22) we may compute
the tensors I°, I1 and the vector G, and then by means of Eqs. (1.6) we may examine vari-
ous dynamic problems of a body with a fluid.
We note that tensors I° and §! as functions of a complex parameter ¢ can have singu-
larities only for Reo= 0, |a| > 1 and also foro = 0, i.e. for A = oo,
If constant rotation is absent (wgy = 0 = 0), then solutions of Section 4, as can be read-
ily verified, transform into corresponding results of {8] where oscillations of a nonrotating
body with fluid were examined.

5. Particular shapes of cavities. As examples we shall examine functions @,
and tensors 1° and I1 for ellipsoidal and spherical cavities.

1. Let x, be the axis of symmetry of the cavity, i.e. it follows from the fact that if
point (x,, %5, x3) lies on the surface S that point (~x,, =%, -%3) also lies on S. It is not
difficult to see that in this case the solutions of probfems i3.8) have the following proper-

ties in D :
@5 (— o —day ry) T — @ (L, Xy, L), G5 (— o, —Tg T3) = Qg (T Tyy Ty)
7 = 1,2) (5.1)
Functions ¢; have the same properties. It follows from (3.10), (4.21) and (5.1) that
Iy = 13" = Iyjt =Tt = U (7= 1,2 (5.2)

i.e. the axis x4 is the principal axis of tensors I° and I'.
2. Let the walls of the cavity form an ellipsoid
2/ a® + @/ e+ 2 faf =1 (5.3)
Functions @; are sought in the form (analogous solutions for an ellipsoidal cavity are
known [ll and 3] )
1= (bnzy + b1a¥s) 75, P2 = (byyy + baa%a) 25, Py = by ?y? + baga® + bga?azs (5.4)
In this case Eqs. (3.9) are satisfied for j = 1, 2, while for j = 3 we obtain from Eq. (3.9)
b31 + b3‘2 =0 (505)
Into boundary conditions (3.8) let us substitute the components of normal i to the sur-
face of the ellipsoid (5.3), Expression (3.4) for L and functions (5.4). Then these condi-
tions transform into homogeneous polynomials of second degree with respect to coordinates
%;. Equating to zero coefficients of these polynomials we obtain after simple transforma-

tions by +obie+o

(1 +52) bn b12+1—6b11 (1+Gl) (b]g—i)
a:? + ag? o as? + az? =0
by — 1 + 6byy (1 + %) (b1 4-1) - bys —0ba1 -+ + (1 4 62) by -0
a12 + asz a22 a82 =
2b31—'}—5b33—-6=0, 2b32—5b33-—5—-——'0

.6
(b 1 |- 20bs) / as? -+ (bss — 1 — 2bgr) / @s” = O (5.6)
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Solving the first two linear Eqs. of (5.6) with respect to b,, and b, ,, the second two
with respect to b,, and by, and the last three with respect to ’)31, byq and b33 we find

1 1 1 1 14 o

b= — aitagN b= R ( afa? | aray?’ | alay + agt )

1 1 1 1 1+5% 26
by = T( a%as? + aag® ~ aag@  af )’ b= — AN

bay = Gag’ bay — 'ca12 012 — 022 (5'7)

81 g B ggt 2= g1 ap? B =T - al

1 1 1 14062 (ar®+ ag?) (as? -+ as?) o2
N= ar’as? + a1%ag? + as%a5° + ag® arZazlagt + gt

Coefficients (5.7) also satisfy condition (5.5} Eqs. (5.4) and (5.7) determine functions
®;j for ellipsoidal cavity. Functions @;’ are obtained from Eqgs. (5.4), if in Expressions
(5.7) 0 is everywhere replaced by —0. The solutions found exist for all ¢ for which N £ 0.

Substitating Expression (3.4) for L and (5.4) for ¢, into Eq. (3.10) for / 112 we obtain

1
i = s | (6B — bia — ) s+ (8 -+ 6% buumuzy +- (o 09 (e — 1) 7] do
D
Integrating over the volume of the ellipsoid and substituting Exgressions (5.7) for by,

we find I, ;° and analogously also the other components of tensor I”. After simplifications
we obtain

. 7 (81% -+ ag?) T (ag® + as?) R o Y6
ht=—"iugy » == amgy o ==y
. Yaias? 16nta a.a3 |
= g L =lf=0 (r="rp,i=12) (69

Here N is determined by Eq. (5.7).
In case of irrotational flow (o = 0) Egs. (5.4) and (5.7) give
. a—ag?
=0 = gy g o
and analogously also for @, and @3, which coincides with the known expression of Zhukov-
skii’s potentials for irrotational flow in an elliptical cavity [al.
For o = 0 it follows from Eqs. (5.8) and (5.7) for N that
° " . . Y(ag®— as®)? . Y(as® 4 as?)
In®=Jn" —Ju', Ju =m, Jn'=——g (5.9)

Analogous equations (with cyclic transposition of indices) are valid for I,,° and [33°
when o = 0, while the remaining components of tensor I° in this case are equal to zero.
Here J u' and J,, ¥, respectively, are components of the tensor of inertia and the tensor
of associated masses for the ellipsoid [3] with respect to point O in the case of density
p=1.

3. Let us examine a spherical cavity of radius a with center at the point O. Assuming
that a; = a, = a3 = 0 we obtain from Eqs. (5.4), (5.7) and (5.8) after simplification

_ 8(—2x1 +oz) 2 6 (— 2z, — ox1) T3 _ S(mP+ 7
P1= 4 o ®= *+4 » P= 2

— 4 2705 8nad
I’ = Iy® =°a__*_% y In®=—In"= G%, Ig®=—1p (To= a5 =1 2)(5'10)
Functions @; are obtained by means of substituting ¢ by —o in Eqs. (5.10) for @;.
4. Let us compute the tensor I! for a spherical cavity of radius a. Into Eqs. (4.21) for
I,, ! we substitute functions ¢; from (5.10), it; and u, from (4.7), L from (3.4) and compo-
d¥ats of the unit vector of the internal normal'n to the surface of the sphere. Then we
change to new variables £ and yf on the surface of the sphere according to Egs.

z1=a Y1 —Elcosy, x2=a VY1—Esiny, z3=a
After transformations and integration with respect to the angle i from 0 to 27 we
obtain
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It = gt = — 28 § {1+ pa1) [(T00 - 4) B2 44— o2
= AT 3 Pt e [(T0% - 4) BT - 4 — 02 +
4o (P — pel) [(0? —4) 3 - (6* - 4) E]} dE
4mat z
hil=—In=— Gz S1 {o(W™ + pe?) [(6* —2) €2 +-2] —
— i (Pt — po71) [20%3 |- (c* - 4) ]} dE
1

ot = — et { (a7t ) (4 — B9 o (it — ) (2 — E))

-1
g = Vo VETFE (5.1

Integrals {5.11) are evaluated in terms of elementary functions. After integration and
reduction of similar terms we shall have
Iyt = Ipg! == % [i (653% - 13662 —— 16) (N — §) — 6 (250¢ — T06® — 8) (m + {)]
Iyl = — In! = %6 [i (216¢ 4 65* — 56) (1 — §) -+ & (9362 + 28) (1 + {)]

Ingt = % (01 + )2 [2 (4" + 1) (1 — 1) + 0 (562 — 1) (A + L))

167at S -—
= - B = Velti
= T105 Vameer (o 4y Ver=ti =Vt (5.12)
The remaining components of tensor I' are equal to zero in accordance with (5.2). As
radicals in Egs. (5.12§’those branches of the root are taken for which Re < 0 and Re{< 0.
Foro -+ 0 Eqs. (5.12) after removal of indeterminacies transform into corresponding equa~
tions of [8], taking into account differences in notation

6. Motion of body with fluid. With the assumptions made, the dynamics of a
body with fluid are described by the last Eq. of (1.6) into which it is necessary to substi-
tute G from (4.22). Let the tensors 1° and I! be known for the given shape of cavity, Vari-
ous formulations of problems on motion of a body with fluid are possible.

1. If the motion of the body is given (A and {} are known), then substituting the vector
@ from (4.22) into Eq. (1.6) we find the moment M which is necessary for maintaining of
the given motion of the body with fluid.

2. Let the axis of rotation of the body 0,y4, which goes through the center of inertia O,
of the entire system parallel to axis Ox,, be the main central axis of inertia of the system.
Let us denote through /,, the components of the tensor of inertia of the whole system J in
the system of coordinates O,y ,y,73. The axes of these coordinates are parallel to the axes
of system Ox,x,x4(Fig. 1). ¥hen we obtain Egs.

133' :Jjg-": 0, J'O)(;:J;;g(l)ue;;, (!)QX(J'(!)Q) =0 f=1,2) 6.1

It is assumed that the moment of external forces has the form M = My e*, where the quan-

tity A and vector M, are given. Calculation of forced oscillations of the system is reduced
to determination of vector {}. Substituting Eqs. (4.22) and {6.1) into the last Eq. of (1.6) we

obtain
A+ oD)-Q 4 wpes x [(I +pI)- Q@ — J5,Q] = My (6.2)

In this manner the problem has been reduced to the solution of linear inhomogeneous Eq.
(6.2) for vector {}.

3. Let us examine the more complicated and interesting problem of natural oscillations
of a rotating body with a fluid near a steady rotation. The moment of external forces with
respect to point 0, is taken as equal to zero (M = 0, the body is free) and let, as previous-
ly, the axis of rotation O, y; be the main axis of inertia of the system, i.e. Eqs. (6.1) are
satisfied. We substitute do = 0 and Eq. (3.4) for ¢ into Eq. (6.2), assuming that A # 0

(J 4 o) Q + Yaoe; x [(F 4 pl)- Q@ — J5Q2] =0 (6.3)
The determinant of the linear homogeneous (with respect to {}) system (6.3) is set equal

to zero and taking into account (6.1) and {(4.22) we obtain the characteristic equation
Ky — /y5Ky, Ko — o0 (Ko — Jas), p(f13 — 1fo01s)

Ko + 136 (Ku — Js), Ko +1/25K1s, p (T -+ Ys00) | = f(a,p, Y V) =0
pls, pls., Jys + plag
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Kiw =T+ 005 Ti=1T;"+ ]/V Ijklw T =Jy, (4, k=1,2,3) (6.4
Here the components /,, are constant while /,,° and I;; ! are functions of g depending
on the shape of the cavity. The roots o of Eq. (JA) determine the eigen numbers A = 2w, /o

of the problem on oscillations of a rotating body with fluid. Let us examine Eq. (6.4) in

some cases, . .
4. Let the ratio of the mass of fluid to the mass of the entire system be small, i.e. p <1

(see end of Section 1). In the case of a solid body without fluid (p = 0) Eq. (6.4) is reduced
to a quadratic Eq.
(a5 — J11) oz — Ja2)'— J1g?) 0% + & (I — /0% = 0 (6.5)
The free term of (6.5) is positive since J is a positive definite tensor. For stability of
rotation it is necessary that g be purely imaginary and for this it is required that
Vs —J11) (Jss — Ja2) > J1o (6.6)
This is a well-known condition for stability of stationary rotation of a free solid body.
Without destroying generality the principal central axes of inertia of the system are selec-
ted to be axes y, and y,. Then J;, = 0 and condition (6.6) are reduced to the requirement
that the moment of inertia J ;4 be either the largest or the smallest principal central moment
of inertia of the system. The roots of Eq. (6.5) for / 12 =0are:

01,0° = F2i (Ju-’s:)!/' (Vs — J1) (Jss — Tu)™" (6.7)
The roots of Eq. (6.4) for p < 1 are determined by the perturbation method. We assume

in Eq. (6.4)
0, = 0,° + pb,° (s=1,2) (6.8)

Taking into account that 0,° is a root of the function f(5,°% 0, \/V), we obtain from (6.4),
with accuracy to small terms of higher order,

of /dp
af / ds

Derivatives in Eq. (6.9) are computed according to rules of differentiation of determin-
ant (6.4) assuming that J, , = 0. Subsequently 0,° is substituted from Eq. (6.7). We obtain
corrections to g in thJe form R 1 1

o 33 1122 22J 11

8,° = (Jas— J11) (Jas — Ja2) [? (fn — Jas + Ju— Jss ) +In— Ilz] (+=1,2)(6.10)

Values of I;; in (6.10) must be taken for o =0,

For an ideaffluid (v = 0) it is necessary in Egq. (6.10) to take I, = I;;°. Let the stabil-
ity condition (6.6) be fulfilled, and both roots ¢,° from (6.7) be purely imaginary quantities.
As follows from Eq. (3.16) in this case, I,,° and I;,° will be real, while the difference /,,°
—1,,°will be a purely imaginary quantity. Consequently, corrections 8,° frcm (6.10) will
be purely imaginary in this case. If, however, the quantities 0, are real, then all compo-
nents of the tensor 1° are also real {see Section 3) and corrections §,° turn out to be real.

In this manner the presence of a small mass of ideal fluid in the cavity of a rotating solid
body in the first approximation with respect to parameter p, does not change the stability
(or lack of stability) of motion of the solid body leaving the roots of the characteristic equa-
tion purely imaginary (or real).

5. Let us examine Eq. (6.4) in the case where the fluid is ideal (v = 0) and the cavity
has the shape of an ellipscid (5.3). Substituting Formulas (5.8) into Eq. (6.4) (after expan-

sion of the determinant and some transformations) we obtain
A0% 4 4,02+ A43=0

Ay = (Js3 — Jy) a3 — Jg2) — J1% Az = (a® + as?) (ag® + a5%) ay"%a"2X
X33 — I11°) Jas — J22°) — J1a?) + 4 (Judas — J1a®) — 4pvagi/ss

8,° = —

fOl’ S = 6‘°. p= 0 (6.9)

As = 4 (a,® + ag®) (a2® + a5?) ;7% a7 (I y 2" — J1a?)

In® = Ju — pyaslas® (a® + a7, Ja® = Jag — pYafag? (ay3 + a,%)71(6.11)

. erre Y is determined from (5.8). Quantity / ,° (and analogously J,,°) are presented in
the form

Ju'=Ju—p(u —In")
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where J ' and Jq4, ¥ are introduced in (5.9). Quantities J ,k° are components (in axes
Oyy1Y273) of the tensor of inertia J © of that solid body which has an equivalent body with
a cavity f?lied with ideal fluid-izx-Gase of irrotational flow [3]. We note that from the posi-
tive definiteness of tensor J° and Eq. J,,°= J 1, it follows that A5 > 0. It is easy to find
o from Eq. (6.11) and subsequently al-olka Xq /o . For stability it is necessary that all
roots of Eq. (6.11) be purely imaginary (in this paper stability is examined in the linear
approximation). For this it is easy to see that

4,20 A > 2V A4,
is necessary and sufficient {for 4, > 0).

Taking into account Expression (6.11) for 4,, the first of these conditions of stability
coincides with inequality (6.6) and is the ntahifity condition for rotation of a free solid
body which is obtained when all fluid solidifies in the cavity.

The motion of a body with an ellipsoidal cavity filled with ideal fluid has been investi-
gated by many authors using different methods (for example, [1to 3]). An equation analo-
gous to (6.11) was derived and in a number of cases analyzed in|11].

Let, in particular, the system have dynamic symmetry (/= J 3, /13 = 0) and the cav-
ity be an ellipsoid of rotation (a, = a,). Then it is easy to verify that t,he biquadratic Eq.
(6.11) can be presented in the form

A0t A0+ Ag = (A0 + id@ + Ay (A0? — i40 + Ag) = 0
Ag=Jyg — I Ag = (o + ag®) a,7*(Jgs — J11°) — 2y
Ay = 2(a® + a¥a; o y° (6.12)

In[1 and 2] the characteristic equation was obtained for a symmetrical top with an axi-
symmetric ellipscidal cavity filled with an ideal fluid. If in equations of papers [1and 2]
the gravity force is set equal to zero, quadratic equations are obtained which can be shown
to be equivalent to equations into which Eq. (6.12) is expanded. For stability it is neces-
sary and sufficient that Asz + 44,4530,

6. In the case of fluid with low viscosity (1 < 1) we apply the method of perturbations
to Eq. (6.4). Let ¢ ' be some nonmaltiple root of (6.4) for an ideal fluid (for v = 0). The
root o of (6.4) which forv <« 1 is’close to o ’ and the corresponding characteristic value is
sought in the form

o=0+v,  h=20/0=2 [@)F —vh@E)? ] 6.13)

Substituting o from (6,13) into Eq. (6.4) and taking into account that f(o ', p, 0) = 0 we

obtain, with accuracy to small terms of higher order, in analogy to (6.9)
]
§=— % forr c=¢’, v=0 (6.14)

Actual computations are carried out for a spherical cavity of radius a. Without destroy-
ing generality it is assumed that forj = 1, 2; 3 the axes O, y, are the principal central axes
of the inertial system. Moments of inertia (6.11) of an equivalent solid body in the given
case are

R I = Jjp =0 G-k, k=123 (615

Here y, is determined by Eq. (5.10). Tensor J°, as determined by Eq. (6.15), is the ten-
sor of the inertial system in which all the flnid is replaced by a point mass equal to the
mass of fluid and located at the center O of the sphere.

We note identities which follow from Eqs. (5.10)

In® —Yoo151° = Ing® + 1/20112° = ~ 7o, Ig® — 46T 9° = Ip1° +1/611° = 0

These identities and also Eqs. (5.2) and (5.10) and the expression for /,, in terms of
J;x° according to (6.15) are substituted into determinant (6.4). We obtain

f6, 0, Vv)=(Js*+p Vv Is)X (6.16)

In® +p V(' —soln) e (Ts® — In%) +p Vi = ol _

196 (J11® — J8a®) +p Vvl +16Int), Jo® +p Vv (I + o olg)
Assuming v = 0 in Eq. (6.16) we obtain an Eq. of the form (6.5) with exchange of I‘{ for

7.0 In this manner a body with a spherical cavity filled with an ideal fluid is equivalent to
a solid body with a tensor of inertia J°. Computing derivatives of f from (6.16) we also find
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8 from Eq. (6.14). In analogy to (6.7) and (6.10) we obtain
51.’ =4 ik, k=2 (JuJs®) /s [{(J3s® — Ju') {(Vna® — Jg"’)]‘""

5 pJss® 2 ( InlJg® Iyl0y° It — Iyt 6.17)
.(Jﬂso‘”Jllo)jJﬂo—Ja") 6'- Ju°-—:J o Jaa® __J"o 0N = £13° |
Eqs. (6.13), (6.17) and (5.12) determine eigen nnnﬁxers of the problem under examination

1f] ,,° is the intermediate in magnitude, moment of inertia (for example J,°<J33°<J,,°)
then both roots ¢ ' are real and the motion of the body is unstable in the absence of vis-
cosity. A low viscosity will change these roots somewhat in accordance with Eqs. (6.13),
however, generally speaking, the motion will remain unatable.

More interesting is the case when J,,° is the largest or smallest principal central mo-
ment of inertia of the equivalent body. Then % from {6.17) is real. From the known inequal-
ity J 33°K T 11°+ ] 22" for moments of inertia, the following inequality results

Tua’ 2> Vs’ — I1°) (Fs® —J2") >0
From this we obtain on the basis of (6.17) that k > 2. Radicals in Eqs. (5.12) are computed
selecting branches with negative real parts.

Nn=—0—)VEEL/VZk ==+ DVEF1/VIk (0 = +ik)(6.18)

Here and in the following the upper and lower signs correspond to the selection of signs
in Eq. (6.17) for o’ . Substitating Eqs. (5.12) and (6.18) into Eqs. (6.13) and (6.17) we ob-

tain 0=+ik+ Vv8, A= (Fik?+ V¥V k%)

__pnat (Js® — Jn®) (Jus® — T ") (B1 £ iBy)
4200 11° Jog® Jaa® Voo b (J12° + J22° — Jaa®)2

By = b (kg — hags) — k (hsgs — hegy), By = b (hggy — higa) + K (hsy — hegs)
b=1Jp’l Uu® — I+ I0° e’ = TN hy = 25k% +- 70 i* — 8k
hg =65k —136 k* — 16, hy =21 K® — 643 — 56 k, h = 93 k* — 28

a=ViFi+Viola=Viti—Vici >z O
From Eqgs. (6.19) for & and A it follows that both eigen numbers A for the body with vis-
cous fluid have the same real parts while their imaginary parts differ in sign. The stability

of motion is determined by the sign of the real part 8!, i.e. by the sign of quantity B,.
In order to evaluate the sign of B, some supplementary inequalities are obtained. Since

the function ﬁl(k) from (6.19) is monotonously increasing, while g,(k) monotonously de-
creases, we have for k> 2

a>a@ = V¥V3i+1>27, k<@ =VI—-1<0.8(6.20
An upper eatimate is also obtained for functions g, and simple estimates are made for
function A; for k 3 2 from (6.19)

gt = 2k + 2V B— 1 < 4k < 243, a< VZk<isk

hy >25 K, h, <658, O0Zh<<2E, 0ZLh<BRATR (6.21)
From inequalities (6.20) and (6.21) for k » 2 the following inequalities are obtained
hygy — hogs > ¥4 (25 2.7k — 65-0.8) > k* (67 k — 52)
hagy — hygy < 24.0.8 K 1T K

hagy — hegy > — 4745 D> —TL I (6.22)

Combining the first inequality (6.22) at first with the second and then with the third in-
equality of (6.22) we obtain

(h1gr — hags) — (hsga — hegn) > K4 (50 k — 52) > 0
(h1gy — haga) + (hsga — hegr) > K (67 k — 123) >0

From here

]

(k>2)

higy — hoga > | hsgy — hegy | >0 (6.23)
At first, let us examine the case where J 3 3° will be the smallest moment of inertis:
733°< 7115 733° <7 32" It follows then from the inequality between the arithmetic and geo-
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metric mean (k is determined from Eq. (6.17)) that
b=Jp" (U’ ~Ja)? + I U’ —~ T > & (6.24)
From inequalities (6.23) and (6.24) and Eq. (6.19) for B, it follows that
By 2> k [(hgy — hegs) — (hsga — heg)] >0
i.e. the motion is unstable.
Let] 34°> 71,% J33°> 1 3,° i.e. J35° is the largest among the moments of inertia.
In this case instead of (6.24) we have the inequality
b=Ju' Un® —J5) 7 + I Ua® — )P < — k<0 (6.25)
From inequalities (6.23) and (6.25) it follows that
By < — k [(yg1 — hagy) + (hags — heg}] < 0
i.e. the motion is stable. In this manner the rotation around the axis 0,y; of a free solid
body with spherical cavity filled with a viscous fluid is stable if / ;,°> J,,® and J 33>
> ] ,,° it is unstable if in even one of these two conditions the inequality sign is exchan-
gczod2 ?or the opposite one. Instability in this case is connected with the viscosity of the
fluid and is absent for v = 0. From Eqs. (6.15) it follows that stability conditions can be
written using moments of inertia of the entire system in the form J 43> J;; and J 33> J o9
which coinc?des with known results | 3], We note that above, not on y the conditions for
stability were obtained but also the roots of the characteristic equation, in particular the
decrements of damping, were computed.
The author thanks D.E. Okhotaimskii for discuasion and formulation of the problem.
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